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Abstract

An axisymmetric numerical method to simulate the dynamics of insoluble surfactant on a moving liquid–fluid inter-

face is presented. The motion of the interface is captured using a volume-of-fluid method. Surface tension, which can be

a linear or nonlinear function of surfactant concentration (equation of state), is included as a continuum surface force.

The surfactant evolution is governed by a convection–diffusion equation with a source term that accounts for stretching

of the interface. In the numerical method, the masses of the flow components and the surfactant mass are exactly con-

served. A number of test cases are presented to validate the algorithm. Simulations of a drop in extensional flow, and its

subsequent retraction and breakup upon cessation of the external flow, are performed. Even when the initial surfactant

distribution is dilute, we observe that increases in surfactant concentration locally (i.e. at the drop tips) can result in a

local deviation from the dilute limit. We show that this can lead to differences in effective surface tension, the Marang-

oni forces and the associated drop dynamics between results using the linear and nonlinear equations of state.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Surfactant plays a critical role in numerous important industrial and biomedical applications. For exam-

ple, the formation of very small drops or bubbles by tip streaming relies on the presence of surfactant [1].

The production of such tiny droplets is useful in drug delivery, industrial emulsification [2], liquid/liquid
0021-9991/$ - see front matter � 2004 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2004.06.013

* Corresponding author. Tel.: +1-612-625-6027; fax: +1-612-626-1558.

E-mail addresses: ajames@aem.umn.edu (A.J. James), lowengrb@math.uci.edu (J. Lowengrub).

mailto:ajames@aem.umn.edu 
mailto:lowengrb@math.uci.edu 


686 A.J. James, J. Lowengrub / Journal of Computational Physics 201 (2004) 685–722
extraction and hydrodesulfurization of crude oil [3], polymer blending and plastic production [4], and other

applications.

Surfactants adhere to interfaces resulting in a lowered, non-uniform surface tension along the interface.

This makes the capillary force non-uniform and introduces the Marangoni force. Further, there may be

exchange (adsorption/desorption) of surfactants between the interface and the bulk [2]. Interfacial surfac-
tant is transported with the interface by convection, and may diffuse along the interface in the presence of a

surfactant concentration gradient. Additionally, compression or stretching of the interface causes a corre-

sponding increase or decrease in the concentration. The equation that governs these dynamics has been de-

rived in various forms in [5,6] and is derived in Appendix A in an alternate form that we use here. The

motion of the surfactant and of the surrounding bulk fluids are coupled through the Marangoni force.

While there have been many numerical studies of clean, deformable interfaces, there have been few stud-

ies that incorporate the effects of surfactants. In axisymmetric Stokes flows, Stone and Leal [7] investigated

the effect of insoluble surfactant on drop-breakup. Milliken et al. [8] investigated the effects of the drop/ma-
trix viscosity ratio and the nonlinear equation of state relating the surface tension to the surfactant concen-

tration. Pawar and Stebe [9] investigated the effects of interfacial saturation and interaction. Eggleton et al.

[10] further investigated the effect of the nonlinear equation of state and finally Eggleton et al. [11] used

boundary integral methods to investigate the onset of tip streaming. In fully 3D flows, Li and Pozrikidis

[12] and Yon and Pozrikidis [13] investigated the effects of insoluble surfactant on drop dynamics in Stokes

flows using boundary integral methods. Solubility effects were considered in Stokes flows by Milliken and

Leal [14] for axisymmetric drop dynamics and very recently by Zhou et al. [15] for drop–drop interactions

and coalescence in 3D. The latter work utilized a sharp-interface finite element approach.
Continuum formulations of the governing sharp interface equations have been implemented numerically

primarily for clean drops although there has been recent work on surfactants by Jan and Tryggvason [16]

who studied the effect of surfactants on rising bubbles using an immersed boundary/front tracking method

and Ceniceros [17] who used a hybrid level-set/front tracking method to study the effect of surfactants on

capillary waves. Xu and Zhao [52] presented a methodology to simulate surfactant transport on a deform-

able interface in conjunction with a level set method. They did not couple their method to a flow solver, but

presented several test cases in which a velocity field is prescribed (they reported up to 6% loss of total surf-

actant mass). Very recently, Renardy and co-workers [34,51] presented simulations of 3D drops with surf-
actant using the volume-of-fluid method (described further below). This work thus far has been limited to

assuming a linear relation between the surfactant concentration and surface tension (equation of state). In

our method, we allow an arbitrary equation of state.

Continuum approaches to simulating interface dynamics include immersed-boundary/ front-tracking

(e.g. see [18–22]), level set (e.g. [23–25]), phase-field (e.g. [28–33]), volume-of-fluid (VOF) (e.g. [34–

42,55,56]), coupled level-set and volume of fluid [43–45], immersed interface (e.g. see [48,49,26,27]) and

ghost-fluid (e.g. [46,47]) methods. In the latter two methods, the interface jump conditions are handled

explicitly by modifying the difference stencils near the interface in various ways. In all of the other methods,
the flow discontinuities (density, viscosity) are smoothed and the surface tension force is distributed over a

thin layer near the interface to become a volume force. As the thickness of the layer approaches zero the

volume force approaches the proper surface force. The Navier–Stokes equations are then solved on a fixed

Eulerian mesh making the extension to 3D straightforward. Each method differs in the details of how this is

carried out.

The volume of fluid (VOF) method was developed by [42] and [55] and is the method we use in this pa-

per. The main advantages of the method are that the interface shape is not constrained, changes in topology

are handled automatically, and mass of each flow component is conserved exactly. The interface location is
captured as it moves through the grid by tracking the local volume fraction. The volume fraction is con-

stant in each fluid and discontinuous at the interface. The volume fraction convection equation is solved

in every cell, but is nontrivial only near an interface. To maintain the discontinuous nature of the volume
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fraction care is taken not to introduce numerical diffusion when solving the equation. Numerical diffusion

would cause smoothing of the discontinuity and the interface would become smeared normal to itself. The

approach used to avoid this is to calculate the flux of one of the fluids across each cell face using a recon-

struction of the interface position. The fluxes are then used to update the volume fraction to the next time

step.
As mentioned previously, Renardy et al. [34] have recently developed a VOF method for 3D drop defor-

mation in the presence of insoluble surfactants. To our knowledge, this was the first application of a con-

tinuum-based method to study surfactant dynamics. We note that tangential surface forces due to variable

surface tension had also previously been implemented in a 2D VOF method for temperature gradient dri-

ven Marangoni convection in a cavity [50]. The implementation of surfactant in [34] was somewhat ad hoc

and only surfactants with linear equations of state were considered. This method was applied to study drop

deformation in shear flows in 3D. It was found that when the drop becomes cusp-like, the simulation be-

comes sensitive to the discretization parameters and the surfactant can diffuse off the drop surface.
Although the simulations appear to show tip streaming, the surfactant concentration becomes very high

at the drop tips and the surface tension actually becomes negative. A mesh refinement study indicated that

the results depend on the temporal and spatial step sizes. More recently, Drumright-Clarke and Renardy

[51] used this algorithm to examine the effect of surfactant on the critical conditions for 3D drop break-up

in shear flow.

In the current paper we present a numerical method that incorporates surfactant dynamics in an axisym-

metric, incompressible Navier–Stokes solver based on the VOF method for interface capturing. We focus

on the case of insoluble surfactant and the surfactant mass is exactly conserved along the interface by our
algorithm. An arbitrary equation of state relating the surfactant concentration to the surface tension may

be used. A number of test cases are presented to validate the algorithm. Simulations of a drop in extensional

flow, and its subsequent retraction and breakup upon cessation of the external flow, are performed. Even

when the initial surfactant distribution is dilute, we observe that increases in surfactant concentration lo-

cally (i.e. at the drop tips) can result in a local deviation from the dilute limit. We show that this can lead

to differences in effective surface tension, Marangoni forces and the associated drop dynamics between re-

sults using the linear and nonlinear equations of state.

The remainder of this paper is organized as follows. In Section 2 we present the governing equations. In
Section 3 we describe the numerical method used for the interface evolution, the surfactant evolution and

the surface tension force. In Section 4 we present a series of simulations used to validate the numerical

method. Section 5 is dedicated to conclusions and future work.
2. Governing equations

We assume that the flow is incompressible in both fluids, so the velocity, u, is divergence free, $ Æu = 0.
The volume of fluid (VOF) method is used to track the interface between the two fluids, called fluid 1 and

fluid 2. In this method a volume fraction, F, is defined in each grid cell as the fraction of the cell that con-

tains fluid 1. Here we assume that F = 1 in the region interior to the interface. The volume fraction evolu-

tion is governed by a convection equation that ensures the interface moves with the velocity of the fluid
oF
ot

þ u � rF ¼ 0: ð1Þ
Surface tension is included via the continuum surface force (CSF) method (e.g. [54]). The CSF is included in

the momentum equation, so the momentum equation satisfies the stress balance boundary condition on the

interface. The surface tension force is calculated in every cell, but it is nonzero only near the interface.

Using the VOF and CSF methods makes it unnecessary to apply boundary conditions at the interface
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and one set of governing equations applies to the entire domain (cells containing only fluid 1, cell contain-

ing only fluid 2, and cells containing an interface). Since the same equations are solved in the whole domain

the density and viscosity must be retained as variables in the momentum equation even though they are

both constant in each fluid. In interfacial cells the density and viscosity are computed as linear functions

of the volume fraction. The equations are non-dimensionalized with length scale L, velocity scale U, inertial
time and pressure scales, and surface tension scale req, which is the equilibrium surface tension (the surface

tension corresponding to a uniformly distributed surfactant with equilibrium concentration Ceq). The den-

sity and viscosity are scaled by the properties of fluid 1 and for simplicity we assume graviational forces are

negligible. Thus, the momentum equation becomes
q
ou
ot

þ u � ru
� �

¼ �rp þ 1

Re
r � ½lðruþruTÞ� þ 1

ReCa
F S; ð2Þ
where q is the density, p is the pressure, Re = q1U L/l1 is the Reynolds number, l is the viscosity and

Ca = Ul1/req is the capillary number. The surface force FS is
F S ¼ r � ½rðI � nnÞdR� ¼ �rjdRnþ
or
os

dRs; ð3Þ
where r is the surface tension, n is the unit vector normal (outward) to the interface, dR is the surface delta

function, j is the interface curvature and s is the unit vector tangent to the interface in the s direction. The

first term on the right-hand side of Eq. (3) is the capillary force and the second term is the Marangoni
force.Additionally a density ratio, a = q1/q2, and a viscosity ratio, k = l1/l2, are defined. The normal vector

and the surface delta function are determined from the gradient of the volume fraction,
n ¼ � rF
jrF j ; dR ¼ jrF j: ð4Þ
The surfactant concentration evolution is governed by a convection–diffusion equation with a source term

to account for interfacial stretching,
oC
ot

þ u � rC ¼ 1

PeS
r2

SCþ Cn � ru � n; ð5Þ
where C is the interfacial surfactant concentration, scaled by the equilibrium concentration, Ceq, PeS = UL/

DS is the surface Peclet number, DS is the surface diffusivity of surfactant, and r2
S is the surface Laplacian

operator. To see that Eq. (5) is well defined and is equivalent to alternative formulations of the surfactant
equation (e.g. [5,6]), see Appendix A.

In our finite volume method, we do not solve Eq. (5) directly and instead relate the surfactant concen-

tration (in a finite volume) to the ratio of the surfactant mass M and surface area A in that volume, i.e.
C ¼ M
A
: ð6Þ
The surfactant mass and surface area are tracked independently as described below.

The area has been non-dimensionalized by L2 and the mass by CeqL
2. Siegel [63] has also proposed

decomposing concentration into mass and area. The equations for M and A are derived as follows. The

interfacial area in a finite volume, V, is obtained by integrating the surface delta function over the volume
A ¼
Z
V

dR dV : ð7Þ
Integrating the concentration times the surface delta function over the volume yields the surfactant

mass,
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M ¼
Z
V

CdR dV : ð8Þ
Differentiation of Eq. (7) with respect to time yields
DA
Dt

¼ �
Z
V

ðn � ru � nÞdR dV : ð9Þ
The left-hand side of Eq. (9) is the time rate of change of the area of a material element of the interface. The

right-hand side represents changes in interfacial area due to stretching. For a vanishing volume, this can be

written in differential form as
DA
Dt

¼ oA
ot

þ u � rA ¼ �Aðn � ru � nÞ; ð10Þ
which is also derived by Batchelor [53]. The mass of surfactant on a material element of the interface can

change if there is diffusion along the interface. Diffusion of mass through the boundary of a finite volume

occurs through the curve where the interface intersects the boundary. A segment of this curve, called C, is

illustrated in Fig. 1. Using Fick�s Law of mass diffusion, the mass is governed by
DM
Dt

¼ 1

PeS

Z
C

n� n̂V � nð Þ � rSCdC; ð11Þ
where n̂V is the unit vector pointed normally outward to the boundary of the volume. The cross product
n� n̂V gives the direction tangent to both the interface and the cell, along C. Mass diffused in this direction

along the interface does not cross the boundary of the finite volume. The cross product n� n̂V � n gives the

other portion of the diffusion that is tangent to the interface and that does cross the boundary of the vol-

ume. Thus, the right-hand side of Eq. (11) is obtained.

Using the divergence theorem, Eq. (11) can be written as
DM
Dt

¼ 1

PeS

Z
V

r2
SCdR dV : ð12Þ
nnn V ×× ˆ

Vnn ˆ×

Volume

boundary

Interface

n

Vn̂
C

Fig. 1. Interface geometry used in evaluating interfacial diffusion of surfactant mass.
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This leads to a differential form for a vanishing volume
DM
Dt

¼ oM
ot

þ u � rM ¼ A
PeS

r2
SC: ð13Þ
Eq. (5) is regained by combining Eqs. (6), (10) and (13).

Finally, an equation of state is given for the surface tension as a function of surfactant concentration. In

this method the equation of state may be linear or nonlinear. For example, the Langmuir equation of state

is
r ¼ 1þ E lnð1� xCÞ
1þ E lnð1� xÞ ; ð14Þ
where E is the surfactant elasticity and x = Ceq/C* is a measure of surfactant coverage; C* is the concentra-

tion of the surfactant in the maximum packing limit. A linear equation of state can also be used:
r ¼ 1þ bð1� CÞ; ð15Þ

where b = Ex in the limit of small x. Note that for both equations of state the scaling is constructed so that

the equilibrium dimensionless concentration, C = 1, corresponds to the equilibrium dimensionless surface

tension, r = 1.
3. Computational method

3.1. Introduction

The axisymmetric governing equations are discretized using a finite-volume method, on a fixed, struc-

tured, uniform, staggered grid, in a rectangular domain in the r–z plane. In the staggered grid arrangement

all variables except the velocity components are defined at cell centers (i, j), where index i represents a grid

line of constant r and index j represents a grid line of constant z. The radial velocity component, u, is de-

fined on ðiþ 1
2
; jÞ cell faces and the vertical component, v, on ði; jþ 1

2
Þ cell faces.

An explicit Euler time integration method is used, except that surfactant diffusion is discretized implicitly
as described in Section 3.6. At each time step, first the velocity and pressure are updated, and then the vol-

ume fraction and the surfactant distribution are updated as described below. Adaptive time stepping is used

to ensure computational stability. The time step is limited at each step by convective, viscous, and capillary

criteria. These limits are parameterized by a Courant number, DtC, a von Neumann number, DtvN, and a

capillary time step limit, DtCap, such that
Dt ¼ min
DtCDx
Umax

;DtvNRe
Dx
2

� �2

;DtCapReCaDx3=2
 !

; ð16Þ
where Dx is the minimum spatial step size and Umax is the maximum velocity component magnitude in the

domain. In the results presented in Section 4, DtC = DtvN = DtCap = 0.1 unless otherwise specified.

Because of the convection routine used, the Courant number must be less than one to ensure that the

interface does not move through more than one grid cell in a single time step. We use 0.1 as a more con-
servative value to ensure accuracy and stability. The use of other advection algorithms [67,68] could be used

to relax this time step stability constraint.

The continuity and momentum equations are discretized using second-order central differences, except

for the surface stress, which is described in Section 3.7. The explicit MAC method [57] is used to compute

the velocity and pressure fields. The resulting discrete pressure-Poisson equation is solved using an incom-
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plete-Cholesky conjugate-gradient method [58]. The flow solver and the volume fraction evolution algo-

rithms, and their verification, are described in more detail in [35,59].

3.2. Basic strategy for surfactant evolution

The method used to compute the evolution of the surfactant is inspired by the VOF method. In the VOF

method, the volume of fluid 1 in a grid cell at the beginning of a time step is simply the cell volume times the

volume fraction, by definition. During a time step the volume of fluid 1 that moves between each pair of

adjacent grid cells (the volume flux) is computed. The volume fraction at the end of a time step is then com-

puted as the initial volume of fluid 1 minus the net volume flux out of the cell, divided by the cell volume.

Thus, although Eq. (1) governs the evolution of the volume fraction, the method actually tracks fluid vol-

umes. This is equivalent to tracking fluid masses, since the density of each fluid is constant, and ensures

mass conservation.
The surfactant concentration is the mass concentration of surfactant on the interface, just as the vol-

ume fraction is the volume concentration of fluid 1 in a grid cell. The current approach to surfactant

concentration evolution is analogous to volume fraction evolution in that surfactant mass is tracked.

The concentration in a grid cell is then determined by dividing the surfactant mass in the cell by

the surface area of the interface in the cell. Compared to the volume fraction evolution, the surfactant

concentration evolution is complicated by the fact that surfactant mass may be transported between

cells by diffusion as well as convection, and that the surface area in a cell may vary, unlike the cell

volume. Because of this, it is critical to accurately track the surface area, as well as the volume fraction.
The importance of ‘‘accuracy in the representation of the surface geometry’’ has also been recognized

by Yon and Pozrikidis [13].

Thus, the concentration of surfactant in a grid cell can change by three mechanisms, as described by the

governing equation: convection, diffusion and area stretching/compression. In practice, this is accomplished

in three sub-steps during each time step. Surfactant mass and area are numerically convected in tandem

with the volume fraction, since these quantities are physically convected together. Area stretching and mass

diffusion are computed separately.

In the VOF method the interface is ‘‘reconstructed’’ at the beginning of a time step for more accurate
simulation of its evolution. This reconstruction is the approximation of the interface as a line segment in

each interfacial cell. This segment then defines where the volume of fluid 1 lies within the cell. Similarly,

to accurately describe the surfactant distribution in a grid cell the concentration is reconstructed as a linear

function along the interfacial line segment.

In the remainder of this section is organized as follows. The volume fraction and concentration recon-

structions are described first, in Section 3.3, since they are used in computing the evolution. Next, the meth-

od used to evolve the volume fraction is reviewed in Section 3.4. Then the surface area evolution is

described, Section 3.5, followed by the surfactant evolution, Section 3.6. Finally, the method used to com-
pute the surface force is presented in Section 3.7.

3.3. Volume fraction and surfactant concentration reconstruction

To convect volumes of fluid while preventing smearing of the interface normal to itself it is first necessary

to reconstruct the interface from the volume fraction field. This interface reconstruction locates where the

volume of fluid 1 resides in the cell, rather than assuming both fluids are distributed uniformly. We have

found that convection of surfactant similarly suffers from excessive numerical diffusion if the surfactant
is assumed to uniformly distributed along the interface, so its distribution is also reconstructed. The recon-

struction is illustrated in Fig. 2. The interface and the concentration are both reconstructed at the beginning

of each time step and at intermediate steps as needed.
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Fig. 2. Interface reconstruction. The interface is approximated by the straight line z = ar + b. The concentration is approximated as a

linear function of the coordinate, s, along the line.
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The volume fraction distribution in a cell is determined by approximating the interface in a cell as a

straight line
z ¼ ar þ b: ð17Þ

Note that a straight-line approximation of the interface in the r�z plane defines a conical axisymmetric

surface. The line segment approximation of the interface is defined independently in each cell, so the

approximate interface need not be continuous from one cell to the next. First, the normal vector is com-
puted as the volume fraction gradient using a finite difference method with a nine-point stencil. The normal

vector defines the slope, a,
a ¼ � nr
nz

; ð18Þ
where nr and nz are the radial and vertical components of the normal vector, respectively. The normal vec-

tor is also used to flag whether fluid 1 resides above or below the line. The intercept, b, is calculated iter-

atively so that the volume of fluid 1 defined by the line divided by the cell volume equals the cell volume

fraction, Fi,j.

The surfactant concentration is reconstructed as a linear function of position, s, along the straight-line

interface reconstruction
C ¼ ðrSCÞsþ c; ð19Þ

where the surface gradient, $SC, is taken to be constant in each cell. As for the interface reconstruction, the

function need not be continuous from one cell to the next. Since the concentration is only defined on the

interface the surface gradient cannot be computed using a simple finite difference formula, as the normal

vector is for the interface reconstruction. Instead the gradient is computed using only the two adjacent cells

that contain an interface segment. This is illustrated in Fig. 3 for the case in which the adjacent cells that

contain an interface segment are cells (i + 1, j) and (i � 1, j). The procedure is equivalent if other adjacent
cells are used. Normally exactly two adjacent grid cells will have non-zero interfacial area, but to account

for possible degeneracies the two adjacent cells with the largest interfacial areas are used. The locations of
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the midpoints of the straight-line interface approximations in each of these cells are determined. The con-

centration gradient is the difference in concentration between the two cells divided by the distance, L, be-

tween their interface midpoints. For the case illustrated in Fig. 3, for example
ðrSCÞi;j ¼
Ciþ1;j � Ci�1;j

L
: ð20Þ
The intercept, c, in the concentration reconstruction is then computed to ensure that the average concen-

tration defined by Eq. (19) equals the known average concentration in the cell, Ci,j. This is done by integrat-
ing the concentration over the straight line and dividing by the area of the line
Ci;j ¼
R rmax

rmin
2prCdsR rmax

rmin
2prds

: ð21Þ
Using Eq. (19), the relationship s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
ðr � rminÞ, where rmin is the radial location of the interface end-

point where the coordinate s originates and ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
dr, this becomes
Ci;j ¼
2p
R rmax

rmin
r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
½ðrSCÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
ðr � rminÞ þ c�dr

2p
R rmax

rmin
r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
dr

; ð22Þ
where rmax is the radial location of the other endpoint. This equation is evaluated analytically and solved

for c.

3.4. Volume fraction evolution

The governing equation for the volume fraction is written in axisymmetric, conservative form
oF
ot

þ 1

r
o

or
ðruF Þ þ o

oz
ðvF Þ ¼ F

1

r
o

or
ðruÞ þ ov

oz

� �
: ð23Þ
The velocity divergence term is retained so that numerical error does not accumulate [60]. Following the

methodology of [60], the equation is split into radial and vertical directions using an intermediate volume

fraction, ~F ,
~F i;j � F n
i;j

Dt
þ
RF n

iþ1=2;j � RF n
i�1=2;j

2priDrDzDt
¼ ~F i;j

riþ1=2unþ1
iþ1=2;j � ri�1=2unþ1

i�1=2;j

riDr

 !
; ð24Þ

F nþ1
i;j � ~F i;j

Dt
þ

~ZF i;jþ1=2 � ~ZF i;j�1=2

2priDrDzDt
¼ ~F i;j

vnþ1
i;jþ1=2 � vnþ1

i;j�1=2

Dz

 !
: ð25Þ
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RFi+1/2, j is the volume flux of fluid 1 in the radial direction across the ðiþ 1
2
; jÞ face and ZFi, j+1/2 is the

volume flux of fluid 1 in the vertical direction across the ði; jþ 1
2
Þ face. The volume of a grid cell is 2priDrDz.

The fluxes are calculated in one direction and used to update the volume fraction to the intermediate level.

Then, using the intermediate volume fraction, the fluxes are calculated in the other direction and used to

update the intermediate volume fraction to the next time level. The direction computed first is switched
at each time step.

The volume flux is the amount of fluid 1 that passes through the face during the time step. This flux

equals the amount of fluid 1 in the domain of dependence of the face, at the beginning of the time step.

This is illustrated in Fig. 4 for the case of flux across the ðiþ 1
2
; jÞ face with positive radial velocity,

ui+1/2, j. In general, the domain of dependence is approximated by the region bounded by the face of inter-

est, the two adjacent perpendicular grid lines, and a line parallel to the face of interest that is a distance of

UDt away from the face, where U is the velocity normal to the face. Recall that in axisymmetric coordinates

this rectangular area represents a cylindrical volume. For the specific case shown in Fig. 4 these boundaries
are r = ri+1/2, z = zj�1/2, z = zj+1/2, and r = ri+1/2�ui+1/2, jDt, respectively. Note that the sign of U deter-

mines which cell the domain of dependence is in and the sign of the flux. The flux is the intersection of

the domain of dependence and the portion of the cell volume that contains fluid 1, as defined by a

straight-line reconstruction of the interface.
3.5. Surface area evolution

As mentioned in Section 3.2 the accurate computation of the surface area is critical to the accurate com-
putation of the surfactant concentration. Unfortunately, the area of the straight-line representation of the

interface is a poor approximation of the actual interfacial area. The reason for this can be understood with

reference to the example illustrated in Fig. 5. In this example, consider two adjacent grid cells with volume

fractions Fi,j = 0.9 and Fi, j+1 = 0. The interface reconstruction is shown in Fig. 5(a). If a constant vertical

velocity, U, is applied, the region of fluid in cell (i, j) translates up by a distance UDt during a time step, as

shown in Fig. 5(b). The interfacial area that is convected, A, is the area of that portion of the straight line

that moves into cell (i, j + 1). However, when the interface is reconstructed from the new volume fraction

distribution, as shown in Fig. 5(c), the interfacial area (according to the straight line approximation) is
Interface u i+1/2,j ∆t

r i-1/2 r i+1/2

z j+1/2

z j-1/2

Fluid 1

Fluid 2

Domain of

dependence

Fig. 4. Calculation of volume flux through ðiþ 1
2
; jÞ face. Fluid 1 lies below the line marked ‘‘interface’’ and fluid 2 lies above the line.

The volume of fluid 1 fluxed through the face on the right, RFi+1/2, j, is denoted by the darker gray area.



(i,j+1)

(i,j)

U∆t

A
A* A+A*

(a) (b) (c)

Fig. 5. Interfacial area evolution from linear interface reconstruction: (a) initial configuration, (b) translation, and (c) reconstruction.
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approximately A + A* which is much larger than A because the cell boundary (which has area A*) is inter-

preted as being part of the interface. Therefore, the interfacial area is tracked separately rather than using

the area of the straight-line reconstruction.

Note that although this is a real problem, the example of Fig. 5 is somewhat exaggerated for clarity.

In practice, a line segment that approximates the interface would not end far away from any other line

segment, as shown in Fig. 5. Instead, another line segment would exist in the upper cell, although the
endpoints of the two lines would not exactly coincide. This mismatch would lead to incorrect compu-

tation of the area because the cell boundary between the two endpoints would be interpreted as inter-

facial area.

Accuracy is also an important issue in cases where there is very little interface in a grid cell since the rel-

ative error in the area can become large. For example, both the interface area and the surfactant mass are

small in such cells and therefore a small error in either the area or mass can lead to a large error in the

surfactant concentration. This can then lead to artificially large gradients in surfactant concentration.

We find, however, that such errors and the corresponding large gradients can be controlled by introducing
a small amount of surfactant diffusion (e.g. PeS � 1000), which acts to smooth the gradients. At the same

time, because of the fact that the surfactant mass in the affected cell is small, the overall effect of the dif-

fusion is also small and thus the overall error remains small.

The interfacial area in a grid cell is governed by the following equation in conservative form:
oA
ot

þr � ðuAÞ ¼ �Aðn � ru � nÞ: ð26Þ
The area is updated in three steps. Two of these steps account for convection, one step in each direction,

and are taken in tandem with the volume fraction. An additional step to account for stretching is taken in

between the two convective steps:
~Ai;j � An
i;J þ RAn

iþ1=2;j � RAn
i�1=2;j ¼ 0; ð27Þ

Âi;j ¼ ~Ai;j � Dt~Ai;j n � ru � nð Þnþ1

i;j ; ð28Þ

Anþ1
i;j � Âi;J þ ẐAi;jþ1=2 � ẐAi;j�1=2 ¼ 0; ð29Þ
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where RAn
iþ1=2;j is the interfacial area flux in the radial direction across the ðiþ 1

2
; jÞ face, and ZAn

i;jþ1=2 is the

interfacial area flux in the vertical direction across the ði; jþ 1
2
Þ face. The stretching term in Eq. (28) is eval-

uated with second-order central differences. Convective fluxes of area are computed analogously to the vol-

ume fraction fluxes, and, as for the volume fraction, the direction computed first is switched at each time

step. The fluxes in one direction are used to update the area to an intermediate value in all cells, ~A, at the
same time the volume fraction is updated by convection in the same direction. The straight line interface

reconstruction is then updated. Next, stretching is applied to update the area in all cells to Â. Finally, con-
vective fluxes in the other direction complete the update of the area in all cells to the new time step, An + 1.

This is done in conjunction with the final update of the volume fraction by convection in the same direction.

Computation of the convective area flux is illustrated in Fig. 6 for the case of radial convection through

the face ðiþ 1
2
; jÞ. Computation of the fluxes across other faces is analogous. As for the volume fraction, the

area flux is the area in the domain of dependence at the beginning of the time step. In Fig. 6 this domain is

the region ui+1/2, jDt wide. The area of the straight line in the domain of dependence is
Fig. 6.

the cel
Adod ¼ 2p
Z
dod

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
dr; ð30Þ
and the area of the straight line in the whole cell is
Asl ¼ 2p
Z
cell

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
dr: ð31Þ
Unlike in the volume fraction computation, Adod is not an accurate representation of the area flux, as de-

scribed above. However, the straight line does provide a good representation of which part of the cell the

interface is in. Thus, we assume that the fraction of the actual area in the domain of dependence equals

the fraction of the area of the straight line in the domain of dependence. Thus, the area flux is computed

as the fraction of the area of the straight line in the domain of dependence, Adod/Asl, times the actual cell

interfacial area, Ai, j,
Area flux ¼ Ai;j
Adod

Asl

: ð32Þ
Interface
u i+1/2,j ∆ t

r i-1/2 r i+1/2

z j+1/2

z j-1/2

A dod

A sl

Calculation of area flux through ðiþ 1
2
; jÞ face. The domain of dependence is the region of width ui+1/2, jDt on the right side of

l. The fraction of the cell area fluxed through the right face is the fraction of the straight-line area in the domain of dependence.
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Current efforts are focused on developing a higher-order representation of the interface using parabolic seg-

ments. In this method the interface reconstruction will track the interfacial area correctly, making the

reconstruction consistent with both the volume fraction and the area.

3.6. Surfactant evolution

Rather than solving Eq. (5) for the surfactant concentration, the surfactant mass is tracked. This

approach has the advantage that surfactant mass conservation can be enforced directly. The concen-

tration is also determined since it determines the surface tension and its gradient drives surface

diffusion.

The evolution of the surfactant mass in a cell is governed by the following conservative convection–dif-

fusion equation:
oM
ot

þr � ðuMÞ ¼ A
PeS

r2
SC: ð33Þ
At each time step, the mass equations are updated in three steps that correspond to convection and
diffusion.
~Mi;j �Mn
i;J þ RMn

iþ1=2;j � RMn
i�1=2;j ¼ 0; ð34Þ

M̂ i;j � ~Mi;J þ ~ZMi;jþ1=2 � ~ZMi;j�1=2 ¼ 0; ð35Þ

Mnþ1
i;j � M̂ i;j ¼ DRnþ1

iþ1=2;j � DRnþ1
i�1=2;j þ DZnþ1

i;jþ1=2 � DZnþ1
i;j�1=2: ð36Þ
First, the mass is updated in every cell to an intermediate level, ~M , by convection in one direction, along the

convection of volume fraction and interfacial area in the same direction. After this the interface approxi-

mation is reconstructed, the area is stretched, the average concentration is updated as C = M/A, Eq. (6),

and the concentration approximation is reconstructed. Next, the mass is updated in every cell by convection

in the other direction to M̂ , along with convection of volume fraction and interfacial area. The direction in
which F, A and M are convected first is switched at every time step to avoid skew. Then, once again, the

interface approximation is reconstructed, the average concentration is updated using Eq. (6), and the con-

centration approximation is reconstructed. Finally, the mass is updated in every cell to the next time level,

Mn + 1, by diffusion in both directions simultaneously.

The mass fluxed by convection through a cell face during a time step equals the mass in the domain of

dependence at the beginning of the step, as for volume of fluid and interfacial area. Its computation is anal-

ogous to the area flux computation. A first approximation to the flux is the integral of the concentration

over the straight line in the domain of dependence
Mdod ¼ 2p
Z
dod

r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
½ðrSCÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
ðr � rminÞ þ c�dr: ð37Þ
In Eq. (37) it is crucial to use the linear reconstruction of the concentration, instead of simply its average

value, to avoid excessive numerical diffusion. As for the area, this does not accurately represent the flux

since Mdod is obtained using the straight line. However, Mdod/Adod gives a consistent value for the average

concentration on the portion of the interface that is convected. This is multiplied by the area flux to obtain
a mass flux that is consistent with the area flux
Mass flux ¼ Mdod

Adod

� �
Ai;j

Adod

Asl

� �
: ð38Þ
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Next, the mass is updated to the new time step by diffusion in a single implicit step. Diffusion of surfactant

across a cell face occurs only when there is an interface in both cells adjacent to the face. From Fick�s law,
the radial flux across the face ðiþ 1

2
; jÞ, for example, is
DRnþ1
iþ1=2;j ¼

Dt
PeS

2priþ1=2

oC
os

� �nþ1

iþ1=2;j

: ð39Þ
This can also be obtained from Eq. (11) as follows. For axisymmetric coordinates n� n̂V ¼ �ĥ (the azi-

muthal direction) is the tangent to curve C, n� n̂V � n is the tangent to the interface in the r�z plane point-

ing out of the grid cell, and so ðn� n̂V � nÞ � rSC becomes the scalar derivative of C in this tangent

direction. The length of the curve C is 2pr. Eq. (39) can be approximated, as illustrated in Fig. 7, by
DRnþ1
iþ1=2;j ¼

Dt
PeS

2priþ1=2

Cnþ1
iþ1;j � Cnþ1

i;j

Liþ1=2;j

 !
; ð40Þ
where the surface gradient is approximated as the difference in the average concentration between the two

cells, divided by L, the distance between the midpoints of the straight-line interface reconstructions in the

two cells adjacent to the face. In Fig. 7 the difference between the slopes of the two segments is exaggerated

for clarity. Although the slope is not constrained to vary slowly from one cell to the next, in practice it gen-
erally does vary slowly. If DRi+1/2, j is positive surfactant is fluxed from cell (i + 1, j) to cell (i, j), or from

higher to lower concentration. The flux across a face is set to zero if there is no interface in either of the

adjacent cells. Note that Eq. (36) is implicit, since the concentration in the flux is evaluated at the new time

step. In practice this is written as an equation for concentration by dividing by the area
Cnþ1
i;j ¼ Ĉi;j þ ðDRnþ1

iþ1=2;j � DRnþ1
i�1=2;j þ DZnþ1

i;jþ1=2 � DZnþ1
i;j�1=2Þ=Anþ1

i;j : ð41Þ
Since the fluxes depend on Cnþ1
i;j this coupled system is solved iteratively for Cnþ1

i;j in all cells using the point

Gauss–Seidel method. The surfactant mass is then updated as M = CA.

3.7. Surface tension force

Once the surfactant concentration distribution is known the average surface tension in each grid cell can

be computed from the equation of state, Eq. (15) or (14). The surface tension force, Eq. (3), can be written

as
cell i,j cell i+1,j

Γ i,j

Γ i+1,jL i+1/2,j

r i+1/

DR i+1/2,j

Fig. 7. Schematic of surfactant diffusion flux computation.
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F S ¼ rjrF þ or
os

jrF js: ð42Þ
In the staggered grid arrangement the radial component of this force is computed at ðiþ 1
2
; jÞ cell faces and

the vertical component at ði; jþ 1
2
Þ cell faces. First, the curvature is computed in each grid cell center from a

smoothed volume fraction using standard methods [35]. Next, the curvature is evaluated at each face as the

average of the curvature in the two adjacent cells, e.g.
jiþ1=2;j ¼
ji;j þ jiþ1;j

2
: ð43Þ
The surface tension at cells faces is also computed as the average of the surface tension in the two adjacent

cells, if both cells contain an interface segment. If only one of the adjacent cells contains an interface seg-

ment the surface tension in that cell is used as the surface tension at the face. If there is not an interface

segment in either adjacent cell the surface tension at the face is set to zero and there is no normal force.

The surface gradient of the surface tension is also non-zero only at faces for which both adjacent grid
cells contain an interface segment. For such faces the gradient is computed exactly as the surface gradient

of concentration is computed in evaluating surface diffusion, as illustrated in Fig. 7. First the distance be-

tween the interface midpoints is computed. The gradient is then the difference in the surface tension between

the two cells divided by this distance, L. Since the cell face is not necessarily halfway between the interface

midpoints the method is not strictly second order accurate in space. The magnitude of the volume fraction

gradient at each face is computed using straightforward second-order finite difference approximations. Fi-

nally, the radial and vertical components of the surface stress, FR and FZ, respectively, are
FRiþ1=2;j ¼ ðrjÞiþ1=2;j

F iþ1;j � F i;j

Dr

� �
þ riþ1;j � ri;j

Liþ1=2;j

� �
jrF jiþ1=2;j; ð44Þ

FZi;jþ1=2 ¼ ðrjÞi;jþ1=2

F i;jþ1 � F i;j

Dz

� �
þ ri;jþ1 � ri;j

Li;jþ1=2

� �
jrF ji;jþ1=2: ð45Þ
Another method of evaluating the surface stress is to consider the surface tension force, FAB, on a straight

line segment that approximates the interface in a grid cell. The line segment with endpoints A and B, and
∫
B

A
dsσπ2

Interface

r i-1/2 r i+1/2

z j+1/2

z j-1/2

2πrAσA

2πrBσB

ŝ

Fig. 8. Definitions of interface geometry and surface force in (i, j) cell.
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the surface tension force are illustrated in Fig. 8. A unit tangent vector in the r–z plane, ŝ, is defined point-

ing from A to B. In the axisymmetric geometry, the surface tension force along an interface segment (not

necessarily straight) is
F AB ¼ 2prBrBŝB � 2prArAŝA � 2pr̂
Z B

A
rds; ð46Þ
where s is the spatial coordinate directed from A to B along the interface. This equation is derived in

Appendix B; to our knowledge this formula has not previously appeared in the literature for variable sur-

face tension. From this force the surface stress applied in the momentum equation is obtained by dividing

by the cell volume. This form of the surface stress is used to obtain exact values of the surface force that are
used to compare with discretizations of Eq. (42). These results are shown in the next section. The numerical

implementation of Eq. (46) will be explored in future work.
4. Validation

A number of test cases were performed to validate the algorithms. Testing of the flow solver and volume

fraction advection routines have been reported elsewhere [35,59] and will not be discussed here. In the first
set of tests the flow solver is turned off and the velocity field is prescribed to isolate the new surfactant kin-

ematics algorithms from the flow solver. Convection of the interfacial area and the surfactant are tested in

several configurations without surfactant diffusion. Next, surfactant diffusion on a fixed interface is tested

without convection. The surfactant distribution is then specified to test the implementation of the surface

tension force. Finally, the flow solver is turned on and tests are performed involving solution of all the

equations coupled together in some simple flows. Throughout this section if an exact solution is known

an L1 error will be defined as
L1 Error ¼

P
cells

jvi;j � vexacti;j j

number of cells
; ð47Þ
where v can represent any dependent variable.

In several test cases we find a non-integer order of accuracy and in some tests the error appears to sat-

urate as the grid is refined. There are several effects that may cause this. First, more than one type of error

may be important. For example, in the convection tests there are errors due to both convection and stretch-

ing, and it is not easy to separate the two. Second, although the interface is not explicitly discretized there is
a discretization implied in the way the interface cuts through the grid. This discretization is non-uniform in

all but the simplest test cases. When the grid is refined this implicit interface discretization is not refined

uniformly. Thus, the error may not decrease in a predictable way. Finally, there are several iterative pro-

cedures that may not be fully converged, particularly when the grid is fine.
4.1. Surfactant convection tests

4.1.1. 1D convection tests

Four 1D tests in the radial and vertical directions were performed to check the algorithm that convects

the interface and the surfactant. In each direction, motion tangential and normal to the interface were

tested separately. In each case a velocity field was imposed and the evolution of the volume fraction, inter-

face area, surfactant mass, and surfactant concentration was computed. The surfactant concentration was

initially uniform and should remain so.
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In the first three tests the interface was represented exactly by the staight line reconstruction, so the re-

sults were exact within round-off error. These tests were: (i) radial convection of surfactant along a fixed

horizontal interface, (ii) vertical convection of surfactant along a fixed vertical interface, and (iii) vertical

convection of surfactant with a vertically translating horizontal interface.

In the last 1D test the interface was initialized as a cylinder, with radius r = R, with a uniform surfactant
concentration. A line source on the symmetry axis and a divergence-free, radially-directed velocity,

u ¼ ð1=rÞr̂, were imposed. Thus, the volume fraction, interfacial area, surfactant mass, and surfactant con-

centration were convected outward with the interface. In this case the error is non-zero because there is

stretching of the interface. The stretching term is evaluated at cell centers instead of at the interface. This

does not affect the volume fraction, which is still exact within round-off error. Additionally, the surfactant

mass is exact within round-off error since mass conservation is imposed exactly. The effect of grid resolution

on the error in the interfacial area and the surfactant concentration is shown in Fig. 9. The slope of the

least-squares fit is 4.4 for the area error and 3.4 for the surfactant concentration error.
The difference in accuracy between the area error and surfactant concentration error can be explained as

follows. In an interfacial grid cell with a concentration of one, the exact area and mass are both 2pRDz.
Considering the O(Dz4.4) error in the area due to stretching, the concentration becomes
Fig. 9.

Doma

and so
C ¼ M
A

¼ 2pRDz
2pRDzþOðDz4:4Þ ¼

1

1þOðDz3:4Þ ¼ 1þOðDz3:4Þ: ð48Þ
In more general situations where the interface shape is arbitrary, if the concentration is O(1) the area and

mass are still both O(Dz) (assuming the grid spacing is the same in the radial and vertical directions, which it

always is in practice). If the area error is O(Dzn) and the mass error is O(Dzm), then the concentration

becomes
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C ¼ M
A

¼ OðDzÞ þOðDzmÞ
OðDzÞ þOðDznÞ ¼

Oð1Þ þOðDzm�1Þ
Oð1Þ þOðDzn�1Þ ¼ Oð1Þ þOðDzm�1Þ þOðDzn�1Þ: ð49Þ
Thus, the concentration is one order less accurate than the least accurate of the mass and area.

4.1.2. Axisymmetric convection test

Next, a test was performed involving convection in the radial and vertical directions simultaneously. A

sphere of volume 1
4
was initialized in a 1 · 2 domain. Since the interface was spherical, the straight-line

approximation was not exact. A divergence-free velocity,
u ¼ rr̂ þ ðz� z0Þẑ
½r2 þ ðz� z0Þ2�3=2

; ð50Þ
was imposed, where z0 = 1 is the fixed vertical location of the sphere center. This velocity field is normal to
the interface and causes the sphere to expand. Thus, there was error due to stretching. Additionally, the

surfactant concentration was initially non-uniform, with an exact solution
Cð/; tÞ ¼ 1þ cos/
2

� �
1

16pt þ 1

� �1=3

; ð51Þ
where / is the angular coordinate measured from the pole of the sphere. The shape of the concentration

profile is constant, but the magnitude decreases as the surface area of the sphere increases. The results
are reported after an elapsed time of t ¼ 1

4
. At this time the sphere surface is nearing the domain boundaries.

The effect of grid resolution on the error in the volume fraction, interfacial area, surfactant mass and

surfactant area is shown in Fig. 10. The slope of the least-squares fit is 1.3 for the volume fraction error,

2.3 for the area error, 3.6 for the surfactant mass error, and 3.3 for the surfactant concentration error. The

concentration error is nonlinear due to round off error in the high resolution cases. This comes about be-
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cause the concentration is mass divided by area, which both become small as the grid is refined. Division of

one small number into another is sensitive to round-off errors. Inclusion of a small amount of diffusion in

the computations aleviates this sensitivity by smoothing away the error. The effect of diffusion is illustrated

in the next section.

4.2. Surfactant diffusion tests

In this set of test cases the interface is stationary, and the velocity is fixed at zero. The surfactant is ini-

tialized nonuniformly on the interface, and it diffuses along the interface to become uniform. Three config-

urations are considered. First, the interface is a flat layer and the diffusion is purely radial. Second, the

interface is a cylinder and the diffusion is purely vertical. Finally, the interface is a sphere and both radial

and vertical components of diffusion are present. The exact solutions are
Fig. 11
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� �
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� �
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where f is an eigenvalue determined by the boundary conditions, and R is the sphere radius. In each geom-

etry the surfactant mass and concentration are initialized with the exact solution and then allowed to

evolve.

For diffusion on a flat layer of unit volume the domain was 1 · 1 units. The surfactant mass and surf-

actant concentration errors are shown in Fig. 11 as functions of grid resolution. The slope of the least-
squares fit is 4.0 for the mass error and 3.0 for the concentration error.

For diffusion on a cylinder of volume 1
4
the domain was 1 · 2 units. The surfactant mass and surfactant

concentration errors are shown in Fig. 12 as functions of grid resolution. The slope of the least-squares fit is

3.0 for the mass error and 2.0 for the concentration error.

Similar results are shown in Fig. 13 for diffusion on a spherical interface. The domain was 1 · 2 units and

the sphere volume was 1
4
. The surfactant mass and concentration errors are plotted as a function of the grid

resolution. The slope of the least squares fit is 3.9 for the mass error and 2.7 for the concentration error. The

error is not a smooth function of the number of cells in this case. For the layer and the cylinder, the inter-
face cut through the grid such that the distance between interface midpoints was the same in all cells and

this distance decreased linearly with the grid spacing. For the sphere the interface cuts through the grid non-

uniformly. Although the distance between interface midpoints decreases on average as the grid spacing is

decreased, locally it may decrease in some places and increase in others. However, the overall trend shows

that the error decreases as the grid is refined.

Diffusion on the surface of a sphere was also used to determine the effect of the number of iterations in

the solution for the diffusive evolution. Fig. 14 shows the concentration and mass errors as a function of the

number of iterations. The error drops rapidly in the first two iterations and then does not change.
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Fig. 12. Effect of grid resolution on surfactant mass and surfactant concentration errors during vertical diffusion on a cylindrical

interface. Domain: 1 · 2, cylinder volume: 1
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4.3. Surface force validation

This static test was designed to check the computation of the surface tension force, independently of all

other algorithms. The flow solver was not used. The volume fraction, surface area, surfactant mass and

surfactant concentration were fixed using the exact solution.

The domain was 1 · 2 units. The volume fraction and surface area were initialized for a sphere for vol-

ume 1
4
. The surfactant mass and concentration were initialized for
Cð/Þ ¼ 1þ cos/
2

� �
: ð55Þ
The linear equation of state was used. The exact force was computed using Eq. (46). The error reported is

the average of the L1 errors of the radial and vertical components of the force. The effect of grid resolution

on the error is shown in Fig. 15. The slope of the least-squares fit is 1.7.

4.4. Static drop

In this and the subsequent test cases the flow equations were solved, as well the equations governing

interface and surfactant motion. In this test a spherical drop of radius R is initialized with zero velocity,
uniformly distributed surfactant, zero pressure outside the drop, and pressure ptheory = 2/(RReCa) inside

the drop to balance surface tension. Such a drop should ideally remain static, but numerical mismatch be-

tween the pressure and surface tension forces leads to motion. The interface position adjusts to balance

pressure and surface tension.
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This test was configured to match similar 3D, surfactant-free tests of Kothe et al. [61] with Ca = Re = 1.

The sphere radius was 4. The domain was 8 · 16. The solution was advanced one time step and then the

pressure field was compared to the theoretical pressure field used in the initialization. Since the solution

is only advanced one step the values of the time step, the viscosity ratio and the surface Peclet number

do not effect the results. The presence of surfactant also has no effect on the results since the surfactant
is uniform.

A density ratio of a = 0.5 was chosen to allow comparison to the results of [61]. They quantified the pres-

sure change using an L2 error norm
Fig. 16

compu
L2 error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ð2priDrDzÞ2

pi;j � ptheory
ptheory

 !2
vuut : ð56Þ
This error is presented in Fig. 16 as a function of grid resolution. Kothe et al. [61] only presented two data

points for this density ratio at fairly flow resolution, but the results appear to be consistent. A least-squares

curve fit of the present results has a slope of 1.2.

4.5. Marangoni convection

The previous test is modified by applying a nonuniform initial surfactant concentration and allowing the
solution to evolve in time. Since the concentration is nonuniform the surface tension is nonuniform and

there is a Marangoni force that causes motion. This motion redistributes the surfactant, which eventually

becomes uniform.
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A static sphere with volume 1
4
is initialized in a 1 · 2 domain. The pressure is initally zero outside the

drop and 2/(RReCa) inside the drop to balance the average surface tension force, where R is the sphere

radius. The surfactant mass and concentration are initialized by Eq. (55). The density and viscosity of

the inner and outer fluids are matched and Re = Ca = 1. Both the linear and nonlinear equation of state

are used. The effect of grid resolution and variations in the Peclet number were considered.
The evolution of the surfactant distribution on the sphere surface is shown in Fig. 17 for a typical case.

As the simulation progresses the concentration becomes more uniform due to both diffusion and Marang-

oni convection. For the cases considered, the drop deforms very little. The total surface area typically

changes by less than 2%.

The effect of the Peclet number is illustrated in Fig. 18, where the surfactant concentration as a function

of position on the interface is shown at t = 1. For smaller Peclet number diffusion dominates, so the con-

centration becomes uniform quickly and the Marangoni force is relatively unimportant. When the Peclet

number is large, the concentration is not as smooth, since there is little diffusion or numerical smoothing.
The concentration profile is shown in Fig. 19 for various grid resolutions at t = 1. A Peclet number of

1000 was chosen to minimize smoothing and provide a more stringent test. It is clear that the non-physical

oscillations in the solution are smaller when the grid resolution is higher.

Finally, the difference in the evolution due to the equation of state is illustrated for two cases in Figs. 20

and 21. In both cases the strength of the Marangoni force is matched between the linear and nonlinear EOS

cases by setting b = Ex. The coverage, and hence b, is greater in Fig. 21 than in Fig. 20. The linear equation

of state approximates the nonlinear equation of state in the limit of small surfactant coverage, so it is ex-

pected that the results between the two equations of state differ more in Fig. 21 where the coverage is
higher.
0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

Arc Length

Su
rf

ac
ta

nt
 C

on
ce

nt
ra

tio
n

Time increasing

φ

t = 0t = 2

φ

Fig. 17. Evolution of surfactant concentration on the surface of a deformable sphere. Domain: 1 · 2, 60 · 120 grid cells,

a = k = Re = Ca = 1, PeS = 10, linear equation of state with b = 0.1. The insets show surfactant concentration contours, ranging from

zero (white) to one (black), at the initial (t = 0) and final (t = 2) times.



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.81 1 1.2

Arc Length

Su
rf

ac
ta

nt
 C

on
ce

nt
ra

tio
n

Pe = 1

Pe = 10

Pe = 100

Pe = 1000

Fig. 18. Effect of Peclet number on surfactant concentration profile. Domain: 1 · 2, 60 · 120 grid cells, a = k = Re = Ca = 1, t = 1,

linear equation of state with b = 0.1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2

Arc Length

Su
rf

ac
ta

nt
 C

on
ce

nt
ra

tio
n

15x30

30x60

45x90

60x120

120x240

Fig. 19. Effect of grid resolution on surfactant concentration profile. Domain: 1 · 2, a = k = Re = Ca = 1, PeS = 1000, t = 1, linear

equation of state with b = 0.1.

A.J. James, J. Lowengrub / Journal of Computational Physics 201 (2004) 685–722 709



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1 1.2

Arc Length

Su
rf

ac
ta

nt
 C

on
ce

nt
ra

tio
n

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Su
rf

ac
e 

T
en

si
on

Surface Tension
Nonlinear EOS

Surface Tension
Linear EOS

Concentration
Linear EOS

Concentration
Nonlinear EOS

Fig. 20. Surfactant concentration and surface tension profiles. Domain: 1 · 2, a = k = Re = Ca = 1, PeS = 100, t = 1. Nonlinear

equation of state uses E = 0.2 and x = 0.5, and linear equation of state uses b = Ex = 0.1.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.81 1 1.2

ArcLength

C
on

ce
nt

ra
tio

n

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5
Su

rf
ac

e 
T

en
si

on
Concentration
Linear EOS

Concentration
Nonlinear EOS

Surface Tension
Nonlinear EOS

Surface Tension
Linear EOS

Fig. 21. Surfactant concentration and surface tension profiles. Domain: 1 · 2, a = k = Re = Ca = 1, PeS = 100, t = 1. Nonlinear

equation of state uses E = 0.2 and x = 0.8, and linear equation of state uses b = Ex = 0.16.

710 A.J. James, J. Lowengrub / Journal of Computational Physics 201 (2004) 685–722



A.J. James, J. Lowengrub / Journal of Computational Physics 201 (2004) 685–722 711
4.6. Drop extension

Next, we consider the evolution of a drop subjected to extension for three cases. One case is surfactant-

free, one case includes surfactant with a linear equation of state, and one case includes surfactant with a

nonlinear equation of state that matches the linear equation in the dilute limit (coverage x!0). The viscos-
ity and density ratios are k = 1 and a = 1, respectively. In each case a sphere of unit radius is initialized with

an applied velocity field u = (�r, 2z). The Reynolds and Capillary numbers are Re = 1 and Ca = 0.05. This

velocity field is then maintained on the boundaries and the drop is allowed to evolve. For the cases with

surfactant, the concentration is initially uniform and is dilute with coverage x = 0.1 in the nonlinear case

(elasticity E = 0.2) while in the linear case b = 0.02. Later we will examine the effect of the coverage.

The evolution of the drop shape is shown in Fig. 22 for the three cases (the F = 0.5 contour is plotted).

The drop shapes show that the case without surfactant is stretched the least and the case with nonlinear

surfactant is stretched the most. Fig. 23 shows the evolution of the surfactant concentration grey-scale con-
tours (right side of drop) for the case with nonlinear surfactant. The left side is the drop interface F = 0.5.

The case with linear surfactant looks qualitatively very similar. This figure shows that as the drop is

stretched the outer flow sweeps surfactant to the tips of the drop. Thus, the surface tension is lower at

the tips and higher in the center. Because of this the drop tends to thin more in the center and has less resist-

ance to stretching at the tips resulting in increased stretching for the cases with surfactant. Note that the

(insoluble) surfactant remains bound to the drop interface.

To compare the two cases with surfactant, in Fig. 24 the surfactant concentration (top) and surface ten-

sion (bottom) are plotted as functions of arclength (arclength increases towards the drop tip) at the final
time shown in Fig. 22. Observe that the surfactant concentration is higher at the drop tip for the linear
Nonlinear

LinearClean

Fig. 22. Evolution of a drop subjected to extension. Domain: 2 · 10, 30 · 150 grid cells, time increment between images = 0.5, Re = 1,

Ca = 0.05, PeS = 100, a = k = 1, b = 0.02 for surfactant with linear equation of state, E = 0.2, and x = 0.1 for surfactant with nonlinear

equation of state.



Fig. 23. The surfactant concentration contours. The contours (right) are equally spaced every 0.25 units up to a concentration of 6 for

the case shown in Fig. 22.
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Fig. 24. The surfactant concentration (top) and surface tension (bottom) on a drop subjected to extension. The data correspond to the

linear (solid) and nonlinear (dashed) equation of state for the final time shown in Fig. 22.
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equation of state (solid) since Marangoni forces less strongly resist surfactant redistribution than when the

nonlinear equation of state (dashed) is used. In spite of having a larger surfactant concentration, the drop

using the linear equation of state has a larger surface tension (solid) near the drop tip than does the cor-

responding nonlinear case (dashed). Indeed as shown in Fig. 25, we find that at the drop tip the surfactant

concentration is larger in the linear (solid) case while the surface tension is smaller for the nonlinear
(dashed) case throughout the course of the simulation. This explains why in the nonlinear case, the drop

stretches farther.

In Fig. 26, we consider the Marangoni and capillary forces for the drops from Fig. 22. The roughness in

these plots is due to limited numerical resolution. In Fig. 26 (top), the maximumMaragoni force max|$sr| is
plotted as a function of time for the linear (solid) and nonlinear (dashed) equations of state. The maximum

Marangoni force occurs a small distance behind the drop tip. The Marangoni force resists the redistribution

of the surfactant to the drop tip and is much larger for the nonlinear case (dashed). The capillary force |rj|
at the drop tip is roughly comparable for the linear and nonlinear cases. For this surfactant coverage
(x = 0.1 and b = 0.02), it appears that the the capillary force dominates the Marangoni force. This explains

why the difference between the linear and nonlinear results is rather small. At higher coverages, the devi-

ation between linear and nonlinear can be much bigger [62,9] and our preliminary results [62] indicate that

the Marangoni and capillary force can balance when the nonlinear equation of state is used.

Finally, these simulations show that even though the initial surfactant distribution may be dilute (so that

the linear and nonlinear equations of state nearly match initially), the surfactant distribution at the drop

tips increasingly deviates from the dilute limit as the surfactant accumulates. This, together with the asso-

ciated capillary and Marangoni forces, leads to the observed differences between results using the linear and
nonlinear equations of state (see also [9]).
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4.7. Drop retraction

We now consider the retraction of the extended drops at the final time from Fig. 22 together with a case

in which the surfactant coverage is increased. In the higher coverage case, the linear equation of state is used

with b = 0.06 and as in Fig. 22, the initially spherical drop is subjected to the extensional flow until time

t = 2.0. Because the surface tension is lower, the drop corresponding to the higher surfactant coverage de-

forms more than the lower coverage counterparts. The external flow is turned off and the capillary number

is set to Ca = 1.0 to reflect the surface tension time scale. All other parameters are as in Fig. 22. The retrac-

tion of the drops due to surface tension is shown in Fig. 27. In this figure, the right half of the drop shows
the greyscale contours of the surfactant concentration. As the drops retract, the surfactant-free drop

pinches off first followed by those with surfactant. As the drop pinches off, two daughter drops (and tiny

fragments) are produced. The central mass of fluid retracts, deforms and, in the case of x = 0.1, restabilizes

to produce a nearly spherical drop that has a small oscillation due to the finite Reynolds number (Re = 1).

In the case of b = 0.06, the central mass of fluid undergoes further pinchoff events to produce two addi-

tional satellite drops. Interestingly, at the lower coverage x = 0.1 (and b = 0.02) the final drop configura-

tions are very similar even though the drop dynamics is a bit different.

As the drops retract, surfactant is slowly swept from the drop tip back towards the drop center. At early
times, this is shown in Fig. 28 where the surfactant concentration (top) and surface tension (bottom) are

plotted for the evolving drops using the linear (dashed) and the nonlinear (solid) equations of state for

the lower coverage case x = 0.1 and b = 0.02. After the pinchoff, most of the surfactant remains with the

two daughter drops; the central mass of fluid contains much less surfactant. Although it appears that some

of the surfactant has left the interface, this is because only the F = 0.5 contour is plotted. An examination of



Fig. 27. The evolution of retracting droplets. The initial droplets and surfactant concentration correspond to the final time shown in

Fig. 22 (the simulation with b = 0.06 is obtained analogously). Here, Ca = 1.0 and all other parameters as in those figures. The right

half of the drops show the greyscale contours of the surfactant concentration ranging from 0 to 2.0.
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the data show that the surfactant concentration is actually zero in regions where F = 0 or 1. As the central

mass retracts and the daughter drops become more spherical, the surfactant redistributes reaching nearly

uniform values. In the case of b = 0.06, the central drop contains slightly less surfactant than the smaller

satellites.
5. Conclusions and future work

In this paper, we presented a volume of fluid method that accounts for an evolving surface distribution

of insoluble surfactant and the associated Marangoni force in an axisymmetric geometry. The masses of the

fluid components and of the surfactant are exactly conserved. An arbitrary equation of state relating the

surfactant concentration to the surface tension may be used. A number of test cases were presented to val-

idate the algorithm. Simulations of a drop in extensional flow, and its subsequent retraction and breakup
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upon cessation of the external flow, were performed. Even when the initial surfactant distribution is dilute,

we observed that increases in surfactant concentration locally (i.e. at the drop tips) can result in a local devi-

ation from the dilute limit. We showed that this can lead to differences in effective surface tension, Marang-

oni forces and the associated drop dynamics between results using the linear and nonlinear equations of

state.
Fig. 29. Mesh adaptation in 2D drop extension.
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There are numerous flow configurations we will simulate in the future, and several of these problems will

be used to compare our results to experiments. Comparison is difficult since the total amount of surfactant

on the interface generally cannot be measured, much less the surfactant distribution. However, our simu-

lations can be used to determine such quantities a posteriori by finding the parameters needed to match

experimental results. Such results can be very useful to the experimentalist. For example, we will compare
the velocity of a bubble rising under buoyancy, with and without surfactant, to experimental data. By

matching the bubble velocity, we will then likely be able to predict the actual surfactant coverage and dis-

tribution in the experiment. In particular, we will simulate experiments by Zhang and Finch [69] which re-

port the velocity of a buoyant bubble as a function of distance traveled after being released from rest for

three surfactant concentrations and two bubble sizes. In another problem of interest, Hu et al. [70] quantify

the deformation of a drop subjected to an extensional flow as a function of the capillary number and the

average surface tension. They vary the surface tension by varying surfactant concentration. Thus, by

matching the drop deformation in this experiment, we will also be able to predict the actual surfactant cov-
erage and distribution along the drop.

There are several directions we will pursue in the future. To resolve the wide-ranging length and time

scales inherent in interfacial flows with surfactants, we will implement adaptive mesh refinement. This is

necessary to resolve, for example, very small secondary drops that may pinchoff from the ends of a

primary drop in the presence of surfactant (tip streaming). We will adapt the mesh refinement algo-

rithms developed by Zheng et al. [64] for level-set methods to a coupled level-set/volume-of-fluid meth-

od. In [64], a finite element implementation of the the level-set equations for low Reynolds number

interfacial flows (without surfactant) was solved using an unstructured, adaptive triangulated mesh in
2D and an unstructured tetrahedral mesh in 3D. The mesh is adapted according to a node density

function [65] such that the density of nodes is highest near the interface. In preliminary work, we have

developed a 2D implementation of a coupled level-set/volume-of-fluid algorithm [66] for clean drops

and an example simulation of a drop in extensional flow using this new algorithm is shown in Fig.

29. Observe that the mesh is highly refined near the interface and tracks the evolution of the interface

throughout the domain.

In additional future work, we will link the volume fraction and interface area advection routines to cre-

ate a higher-order, self-consistent interface reconstruction. We will also simulate the transport of soluble
surfactant in the fluid bulk and transfer of surfactant between the bulk and the interface. Finally, the simu-

lations will be generalized to 3D.
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Appendix A. Concentration evolution equation

In this appendix, we demonstrate that Eq. (5) for the surfactant concentration is equivalent to alternative

formulations for incompressible given, for example, in [5]. For incompressible fluids,
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�n � ru � n ¼ I � nn
� �

: ru; ðA:1Þ
where I is the identity tensor. Next, observe that
ðI � nnÞ : ru ¼ rS � uS þ jun; ðA:2Þ
where uS = (I�nn)u is the projection of the velocity in the tangential directions and un = u Æn is the normal
velocity. Using these in Eq. (5), we obtain
oC
ot

þ u � rC ¼ 1

PeS
r2

SC� CrSuS � Cjun; ðA:3Þ
which is the form of the surfactant equation given in [5]. This also shows that Eq. (5) is well defined and that

n Æ$u Æn is continuous across the interface.

Interestingly, from Eqs. (A.1) and (A.2) it follows that the normal component of the strain tensor is also

continuous across the interface, i.e.
½½n � ðruþruTÞ � n��R ¼ 0 ðA:4Þ

for any viscosity ratio. Further, it can be seen that the classical jump conditions for the normal stress across

the interface (e.g. [2]) can be written as
�½½p��R þ ð1� kÞn � ru � n ¼ �j; ðA:5Þ

½½gðI � nnÞðruþruTÞ � n��R ¼ rSr; ðA:6Þ
where g is equal to one in fluid 1 and to k in fluid 2.
Appendix B. Surface stress

In this appendix, we derive the form of the total surface tension stress, given in Eq. (46), acting along an

interface segment from a point A to a point B. The total stress is given by
F AB ¼ �
Z B

A
rjn� or

os
s

� �
rds; ðB:1Þ
where s is the arclength in the r–z plane, the curvature j = jrz + (nr/r), jrz is the (2D) curvature in the r–z

plane and nr is the r-component of the normal vector to the interface. Using the Frenet formulas in the r–z

plane,
o

os
s ¼ �jrzn and

o

os
n ¼ jrzs; ðB:2Þ
we find that
F AB ¼
Z B

A

o

os
ðrrsÞ � r

or
os

sþ nrn
� �� �

ds: ðB:3Þ
But, a straightforward calculation shows that r ¼ or
os sþ nrn. Thus Eq. (B.3) becomes
F AB ¼ ðrBrBs� rArAsÞ � r
Z B

A
rds; ðB:4Þ
as claimed in Eq. (46).



720 A.J. James, J. Lowengrub / Journal of Computational Physics 201 (2004) 685–722
References

[1] R.A. De Bruijn, Tipstreaming of drops in simple shear flows, Chem. Eng. Sci. 48 (1993) 277–284.

[2] R. Defay, I. Priogine, Surface Tension and Adsorption, Wiley, New York, 1966.

[3] D.I. Colliasand, R.K. Prudhomme, Diagnostic techniques of mixing effectiveness: the effect of shear and elongation in drop

production in mixing tanks, Chem. Eng. Sci. 47 (1992) 1401–1410.

[4] H.P. Grace, Dispersion phenomena in high viscosity immiscible fluid systems and application of static mixers as dispersion devices

in such systems, Chem. Eng. Commun. 14 (1982) 225–277.

[5] H.A. Stone, A simple derivation of the time-dependent convective–diffusion equation for surfactant transport along a deforming

interface, Phys. Fluids A 2 (1990) 111.

[6] H. Wong, D. Rumschitzki, C. Maldarelli, On the surfactant mass balance at a deforming fluid interface, Phys. Fluids 8 (1996)

3203–3204.

[7] H.A. Stone, L.G. Leal, The effects of surfactants on drop deformation and breakup, J. Fluid Mech. 222 (1990) 161–186.

[8] W.J. Milliken, H.A. Stone, L.G. Leal, The effect of surfactant on transient motion of Newtonian drops, Phys. Fluids A 5 (1993)

69–79.

[9] Y. Pawar, K.J. Stebe, Marangoni effects on drop deformation in an extensional flow: the role of surfactant physical chemistry. I.

Insoluble surfactants, Phys. Fluids 8 (1996) 1738–1751.

[10] C.D. Eggleton, Y.P. Pawar, K.J. Stebe, Insoluble surfactants on a drop in an extensional flow: a generalization of the stagnated

surface limit to deforming interfaces, J. Fluid Mech. 385 (1999) 79–99.

[11] C.D. Eggleton, T.-M. Tsai, K.J. Stebe, Tip streaming from a drop in the presence of surfactants, Phys. Rev. Lett. 87 (2001)

048302.

[12] X. Li, C. Pozrikidis, The effect of surfactants on drop deformation and on the rheology of dilute emulsions in Stokes flow, J. Fluid

Mech. 341 (1997) 165–194.

[13] S. Yon, C. Pozrikidis, A finite-volume/boundary-element method for flow past interfaces in the presence of surfactants, with

application to shear flow past a viscous drop, Comput. Fluids 27 (1998) 879–902.

[14] W.J. Milliken, L.G. Leal, The influence of surfactant on the deformation and breakup of a viscous drop: the effect of surfactant

solubility, J. Colloid Interface Sci. 166 (1994) 275–285.

[15] H. Zhou, V. Cristini, J. Lowengrub, C. W. Macosko, 3D adaptive finite-element simulations of deformable drops with soluble

surfactant: pair interactions and coalescence. Phys. Fluids, submitted.

[16] Y.-J. Jan, G. Tryggvason, Computational studies of contaminated bubbles, in: I. Sahin, G. Tryggvason (Eds.), Proceedings of a

Symposium on the Dynamics of Bubbles and Vorticity Near Free Surfaces, ASME, 1991, p. 46.

[17] H.D. Ceniceros, The effects of surfactants on the formation and evolution of capillary waves, Phys. Fluids 15 (2003) 245.

[18] J.U. Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (1992) 335.

[19] J. Glimm, M.J. Graham, J. Grove, X.L. Li, T.M. Smith, D. Tan, F. Tangerman, Q. Zhang, Front tracking in two and three

dimensions, Comput. Math. Appl. 35 (1998) 1.

[20] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, Y.J. Jan, A front tracking method

for the computations of multiphase flow, J. Comput. Phys. 169 (2001) 708.

[21] D.J. Torres, J.U. Brackbill, The point-set method: front tracking without connectivity, J. Comput. Phys. 165 (2000) 620.

[22] A. Shin, D. Juric, Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking

without connectivity, J. Comput. Phys. 180 (2002) 427–470.

[23] S. Osher, R. Fedkiw, Level set methods: an overview and some recent results, J. Comput. Phys. 169 (2001) 463.

[24] M. Sussman, P. Smereka, S. Osher, A level-set approach for computing solutions to incompressible two-phase flow, J. Comput.

Phys. 114 (1994) 146.

[25] M. Sussman, A. Almgren, J. Bell, P. Colella, L. Howell, M. Welcome, An adaptive level set approach for incompressible two-

phase flows, J. Comput. Phys. 148 (1999) 81.

[26] Z. Li, R. Leveque, Immersed interface methods for Stokes flow with elastic boundaries or surface tension, SIAM J. Sci. Comput.

18 (1997) 709.

[27] L. Lee, R. Leveque, An immmersed interface method for incompressible Navier–Stokes equations, SIAM J. Sci. Comput. 25

(2003) 832.

[28] D. Jacqmin, Calculation of two-phase Navier–Stokes flows using phase-field modeling, J. Comput. Phys. 55 (1999) 96.

[29] D. Anderson, G.B. McFadden, A.A. Wheeler, Diffuse interface methods in fluid mechanics, Ann. Rev. Fluid Mech. 30 (1998) 139.

[30] H. Lee, J. Lowengrub, J. Goodman, Modeling pinchoff and reconnection in a Hele–Shaw cell: I. The models and their calibration,

Phys. Fluids 14 (2002) 492–513.

[31] H. Lee, J. Lowengrub, J. Goodman, Modeling pinchoff and reconnection in a Hele–Shaw cell: II. Analysis and simulation in the

nonlinear regime, Phys. Fluids 14 (2002) 514–545.

[32] M. Verschueren, F.N. van de Vosseand, H.E.H. Meijer, Diffuse-interface modeling of thermocapillary flow instabilities in a Hele–

Shaw cell, J. Fluid Mech. 434 (2001) 153.



A.J. James, J. Lowengrub / Journal of Computational Physics 201 (2004) 685–722 721
[33] J.-S Kim, K. Kang, J. Lowengrub, Conservative multigrid methods for Cahn–Hilliard fluids, J. Comput. Phys. 193 (2004) 511–

543.

[34] Y.Y. Renardy, M. Renardy, V. Cristini, A new volume-of-fluid formulation for surfactants and simulations of drop deformation

under shear at a low viscosity ratio, Eur. J. Mech. B 21 (2002) 49–59.

[35] A.J. James, M.K. Smith, A. Glezer, Vibration induced drop atomization and the numerical simulation of low-frequency single-

droplet ejection, J. Fluid Mech. 476 (2003) 29–62.

[36] M. Renardy, Y. Renardy, J. Li, Numerical simulation of moving contact line problems using a volume-of-fluid method, J.

Comput. Phys. 171 (2001) 243–263.

[37] R. Scardovelli, S. Zaleski, Direct numerical simulation of free surface and interfacial flow, Ann. Rev. Fluid Mech. 31 (1999)

576.

[38] J. Li, Y. Renardy, Numerical study of flows of two immiscible liquids at low Reynolds number, SIAM Rev. 42 (2000) 417–439.

[39] Y. Renardy, V. Cristini, Effect of inertia on drop breakup under shear, Phys. Fluids 13 (2001) 7–13.

[40] E.G. Puckett, A. Almgren, J. Bell, D.L. Marcus, W.G. Rider, A high-order projection method for tracking fluid interfaces in

variable density incompressible flows, J. Comput. Phys. 130 (1997) 269.

[41] Y. Renardy, M. Renardy, PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method, J. Comput. Phys.

183 (2002) 400–421.

[42] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39 (1981) 201–

225.

[43] M. Sussman, E.G. Puckett, A coupled level-set and volume-of-fluid method for computing 3D and axisymmetric incompressible

two-phase flows, J. Comput. Phys. 162 (2000) 301–337.

[44] A. Bourlioux, A coupled level-set volume-of-fluid method for tracking material interfaces, in: Proceedings of the 6th Annual Int.

Symposium on Computational Fluid Dynamics, Lake Tahoe, CA, 1995.

[45] M. Sussman, A second order coupled level-set and volume-of-fluid method for computing growth and collapse of vapor bubbles,

J. Comput. Phys. 187 (2003) 110.

[46] R. Fedkiw, T. Aslam, B. Merriman, S. Osher, A nonoscillatory Eulerian approach to interfaces in multimaterials flows (the ghost

fluid method), J. Comput. Phys. 152 (1999) 423.

[47] H.S. Udaykumar, L. Tran, D.M. Belk, K.J. Vanden, An Eulerian method for computation of multimaterial impact with ENO

shock-capturing and sharp interfaces, J. Comput. Phys. 186 (2003) 136–177.

[48] T. Hou, Z. Li, S. Osher, H. Zhao, A hybrid method for moving interface problems with applications to Hele–Shaw flow, J.

Comput. Phys. 134 (1997) 457.

[49] B.T. Helenbrook, L. Martinelli, C.K. Law, A numerical method for solving incompressible flow problems with a surface of

discontinuity, J. Comput. Phys. 148 (1999) 366.

[50] G.P. Sasmal, J.I. Hochstein, Marangoni convection with a curved and deforming free surface in a cavity, J. Fluids Eng. 116 (1994)

557–582.

[51] M.A. Drumright-Clarke, Y. Renardy, The effect of insoluble surfactant at dilute concentration on drop breakup under shear with

inertia, Phys. Fluids 16 (2004) 14–21.

[52] J.-J. Xu, H.-K. Zhao, An Eularian formulation for solving partial differential equations along a moving interface, J. Sci. Comput.

19 (2003) 573–594.

[53] G.K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, New York, 1967.

[54] D.B. Kothe, R.C. Mjolsness, M.D. Torrey, RIPPLE: A computer program for incompressible flows with free surfaces, Los

Alamos National Lab Report LA-12007-MS, 1991.

[55] B.D. Nichols, C.W. Hirt, R.S. Hotchkiss, SOLA-VOF: A solution algorithm for transient fluid flow with multiple free boundaries,

Los Alamos National Lab Report LA-8355, 1980.

[56] R. Scardovelli, S. Zaleski, Direct numerical simulation of free-surface and interfacial flow, Ann. Rev. Fluid Mech. 31 (1999) 567–

603.

[57] F.H. Harlow, J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys.

Fluids 8 (1965) 2182–2189.

[58] J.A. Meijerink, H.A. van der Vorst, Guidelines for the usage of incomplete decompositions in solving sets of linear equations as

they occur in practical problems, J. Comput. Phys. 44 (1981) 134–155.

[59] A.J. James, Vibration induced droplet ejection, Ph.D. Thesis, Georgia Institute of Technology, 2000.

[60] E.G. Puckett, A.S. Almgren, J.B. Bell, D.L. Marcus, W.J. Rider, A high-order projection method for tracking fluid interfaces in

variable density incompressible flows, J. Comput. Phys. 130 (1997) 269–282.

[61] D.B. Kothe, W.J. Rider, S.J. Mosso, J.S. Brock, J.I. Hochstein, Volume tracking of interfaces having surface tension in two and

three dimensions, in: Proceedings of the 34th Aerospace Sciences Meeting & Exhibit, January 15–18, 1996, Reno, NV, AIAA

Report 96-0859, 1996.

[62] A. James, J. Lowengrub, in preparation.

[63] M. Siegel, 2000, private communication.



722 A.J. James, J. Lowengrub / Journal of Computational Physics 201 (2004) 685–722
[64] V. Cristini, J. Lowengrub, Z. Zheng, A. Anderson, Adaptive remeshing algorithms for unstructured meshes: application to

interface capturing simulations of multiphase flows, J. Comput. Phys., submitted.

[65] V. Cristini, J. Blawzdziewicz, M. Loewenberg, An adaptive mesh algorithm for evolving surfaces: simulations of drop break-up

and coalescence, J. Comput. Phys. 169 (2001) 345–463.

[66] X. Yang, A. James, J. Lowengrub, X. Zheng, V. Cristini, An adaptive coupled level-set/volume-of-fluid method, in preparation.

[67] J. Li, Calcul d�interface affine par morceauz (piecewise linear interface calculation), C. R. Acad. Sci. Paris., Ser. IIb (Paris) 320

(1995) 391–396.

[68] R. Scardovelli, S. Zaleski, Interface reconstruction with least-square fit and split Eulerian–Lagrangian advection, Int. J. Numer.

Methods Fluids 41 (2003) 251–274.

[69] Y. Zhang, J.A. Finch, A note on single bubble motion in surfactant solutions, J. Fluid Mech. 429 (2001) 63–66.

[70] Y.T. Hu, D.J. Pine, L.G. Leal, Drop deformation, breakup, and coalescence with compatibilizer, Phys. Fluids 12 (2000) 484–489.


	A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant
	Introduction
	Governing equations
	Computational method
	Introduction
	Basic strategy for surfactant evolution
	Volume fraction and surfactant concentration reconstruction
	Volume fraction evolution
	Surface area evolution
	Surfactant evolution
	Surface tension force

	Validation
	Surfactant convection tests
	1D convection tests
	Axisymmetric convection test

	Surfactant diffusion tests
	Surface force validation
	Static drop
	Marangoni convection
	Drop extension
	Drop retraction

	Conclusions and future work
	Acknowledgements
	Concentration evolution equation
	Surface stress
	References


